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ABSTRACT 

The stability of motion of a satellite consisting of a main 

rigid body and three pairs of flexible booms, coinciding with the 

principal axes of the body in undeformed state, is under consider- 

ation. The problem formulation is a hybrid one, in the sense that 

some of the generalized coordinates depend on time alone and the 

other depend on spatial position and time. The problem is trans- 

formed into a discrete one by means of modal analysis. The motion 

stability is investigated by the Liapunov second method. A computer 

program has been written and the numerical results are displayed 

in the form of stability diagrams using the system properties as 

parameters. 
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Introduction 

The rotational motion of a torque-free rigid body is known 

to be stable if the rotation takes place about an axis corresponding 

to the maximum or minimum moment of inertia, but the motion is un- 

stable if the rotation takes place about the axis of intermediate ma- 

ment of inertia (see, for example, Reference 1, Section 6 . 7 1 ,  If 

the body is not entirely rigid but possessing deformable parts, the 

rotational motion can be expected to exhibit different stability 

characteristics. 

In one of the first attempts to treat rigorously distributed 

elastic members, the stability of motion of a spinning symmetric 

body which is part rigid and part elastic has been investigated by 

Meirovitch and Nelson (Reference 2). The mathematical formula-tion 

in Reference 2 consists of a set of ordinary differential equations 

for the rotational motion and another set of partial differential 

equations describing the elastic displacements. We shall refer to 

a system of both ordinary and partial differential equations as 

"hybrid." The hybrid system of Reference 2 has been reduced to a 

system consisting entirely of ordinary differential equations by 

means of modal analysis. The stability of the resulting discrete 

system has been investigated by an infinitesimal analysis and the 

effect of the flexible parts on the motion stability has been dis- 

played in the form of diagrams relating various parameters of the 

system. 

-- - - - - - - -- - A general and rigorous method for the stability analysis of 

systems containing distributed elastic parts has been developed by 

Meirovitch (Reference 3). The method represents an extension of the 

Liapunov second method and works directly with the hybrid system 

of differential equations (in the sense defined above). As an 

application, the case of gravity-gradient stabilization of a satel- 

lite with flexible appendages is solved. The method has been further 

extended to hybrid systems possessing ignorable coordinates (Reference 

4). The general theory is applied to the stability analysis of a 

spinning satellite resembling that of Reference 2. 



The problem under investigation is related to that of Refe- 

rence 4. However, whereas the mathematical model used as an ill- 

ustration in Reference 4 consists of a main rigid body with a pair 

of booms aligned with the spin axis, the model considered here con- 

sists of a main rigid body and three pairs of booms, as shown in 

Figure 2. It turns out that the elastic deformations are not in- 

dependent of one another, so that it is not possible to work directly 

with the hybrid system of equations. The formulation is reduced to 

a set of ordinary differential equations by modal analysis and the 

stability of such a set can be investigated by the Liapunov second 

method. Due to its generality, the problem formulation of Reference 

. 4 is equally applicable here. The present investigation departs from 

that of Reference 4 in the stability analysis. 

This report contains the formulation of the problem, as well as 

numerical results obtained by means of a computer program designed to 

perform the stability analysis. The program has been used to investigate 

the effect of changes in the parameters of the system on its stability, 

General Problem Formulation 

Let us consider a bociy of total mass m moving relative to an 

inertial space XYZ, as shown in Figure 1. The entire body or parts 

of the body are capable of small elastic deformations from a refer- 

ence equilibrium position coinciding with the undeformed state of 

the body. Next we define two sets of body axes, the set xyz w i t l a  

the origin at point 0 and coinciding with the principal axes of the - 
body in the undeformed state, and the set ~ Q C  which is parallel to 

xyz but has the origin at the center of mass c of the deformed body, 

We note that < Q <  is not a principal set of axes. The set xyz serves 

as a suitable reference frame for measuring elastic deformations 

whereas the set <QZ, is more convenient for expressing the overall 

motion. The position of a typical point in the undeformed body 

relative to axes xyz is denoted by the vector* 2 = xi + yj + 2% - - 
* Vector quantities are denoted by wavy lines .under the symbols, 



and t h e  e l a s t i c  displacement of an element of mass dm, o r i g i n a l l y  

coinc ident  with t h a t  p o i n t ,  by t h e  v e c t o r  2 = u ( x , y , z , t ) &  + v ( , c , y , z , t )  j - 
+ w ( x , y , z , t ) ~ ,  where i , j , ~  a r e  u n i t  vec to r s  along axes x , y , z  (or - 
axes < I n , < ) r  r e s p e c t i v e l y .  The r a d i u s  vec to r  from p o i n t  - 0 to c is 

given by r = A 5 (g+u_)dm = - m 3 dm, where we note  t h a t  
-C m r dm 

.** 

m m 
i s  zero  by v i r t u e  of t h e  f a c t  t h a t  0 i s  t h e  c e n t e r  of mass of the - 
undeformed body. A l l  i n t e g r a t i o n s  involved i n  t h i s  r e p o r t  are carried 

over the.domain occupied by t h e  body i n  undeformed s t a t e ,  which i s  

des ignated  a s  t h e  r e fe rence  s t a t e .  

From Figure 1 we conclude t h a t  t h e  p o s i t i o n  of , the  mass e lement  

dm r e l a t i v e  t o  t h e  i n e r t i a l  space i s  _Rd = _Rc + g + gc, where u = 
-c 

u - r = u i + v j  + w k r e p r e s e n t s  t h e  displacement vec to r  measured - -c c- C- C- 

wi th r e s p e c t  t o  axes c q c  and _Rc i s  t h e  p o s i t i o n  of t h e  o r i g i n  of these 

axes r e l a t i v e  t o  t h e  i n e r t i a l  space.  Assuming t h a t  axes x y z ,  hence 

a l s o  axes c n c r  r o t a t e  with angular  v e l o c i t y  g = w i + w j + w k rel- 
6: Q 7 rl: 

a t i v e  t o  t h e  i n e r t i a l  space,  and denot ing by = u c & +  v j + wc& the 
C- 

v e l o c i t y  of dm r e l a t i v e  t o  due t o  t h e  e l a s t i c  e f f e c t ,  it i s  shown 

i n  Reference 3 t h a t  t h e  k i n e t i c  energy has t h e  expression 

where - Jd i s  t h e  i n e r t i a  dyadic  of t h e  deformed body about axes E Q ~ .  

. The elements of t h e  dyadic  a r e  



The k i n e t i c  energy can be w r i t t e n  convenien t ly  i n  t e r m s  of  

m a t r i x  n o t a t i o n .  I f  i kc) i s  t h e  column m a t r i x  corresponding t o  

{ w ]  t h e  column m a t r i x  cor responding  t o  LJ, and LJ] t h e  symmetric 

m a t r i x ,  whose e lements  a r e  t h e  e lements  of  t h e  dyad ic  zd, t h e n  Eq. (I) 
can  be  r e w r i t t e n  i n  t h e  form 

where [ K )  i s  t h e  column m a t r i x  w i th  t h e  e lements  

The angu la r  v e l o c i t y  components w ,w ,w do n o t  r e p r e s e n t  time 
S n Z ;  

r a t e s  o f  change of c e r t a i n  a n g l e s  b u t  n o n i n t e g r a b l e  combinations of 

t i m e  d e r i v a t i v e s  of  angu la r  d i sp lacements .  They a r e  sometimes 

r e f e r r e d  t o  as t i m e  d e r i v a t i v e s  of quas i - coo rd ina t e s .  Denoting by 

'i and ii ( i = 1 , 2 , 3 )  t h e  t r u e  angu la r  d i sp lacements  and t h e i r  t i m e  

r a t e s  of  change, t h e  angu la r  v e l o c i t y  v e c t o r  can be  w r i t t e n  i n  the 

m a t r i x  form w = 6 \ I  where { 6 \ i s  t h e  column m a t r i x  w i th  e l e -  

ments i i ( i = 1 , 2 . 3 )  and [ e l  i s  a 3x3 m a t r i x ,  whose e lements  depend on 

t h e  o r d e r  of t h e  t h r e e  r o t a t i o n s  e i  used t o  produce t h e  o r i e n t a t i o n  

o f  axes  c n ~ ;  r e l a t i v e  t o  an i n e r t i a l  space.  I n  view of t h i s ,  t h e  
- 

k i n e t i c  energy can be w r i t t e n  i n  t e r m s  of  t r u e  angu la r  v e l o c i t i e s  

- - as fo l lows  

i n  which t h e  n o t a t i o n  

has  been adopted.  

The p o t e n t i a l  energy a r i s e s  p r i m a r i l y  from two s o u r c e s ,  namely 

g r a v i t y  and body e l a s t i c i t y .  The g r a v i t a t i o n a l  p o t e n t i a l  energy 



is assumed to be very small compared with the kinetic energy, or 

the elastic potential energy, and will be ignored. The elastic 

potential energy, denoted by VEL and referred to at times as strain 

energy, depends on the nature of the elastic members and is in 

general a function of the partial derivatives of the elastic dis- 

placements u,v,w with respect to the spatial variables x,y,z. Since 

UcrVc~Wc differ from u,v,w by xc,ycrzc. respectively, where the 
latter are independent of the spatial variables, VEL can be regarded 

as depending on the partial derivatives of u c"cfwc with respect to 
L 

x ,y , z .  We assume that VEL is a function of aLuc/axL, a uc/axay, ----, 
2 3 wc/az2 but this assumption in no way affects the generality of the 

formulation. This particular functional dependence of V should be 
EL 

regarded as mere scaffolding used in the construction of a general 

theory, as the final formulation is expressed in a form which involves 

the partial derivatives only implicitly. 

The system differential equations can be obtained by means of 

Hamilton's principle. To this end, a brief discussion of the gener- 

alized coordinates is in order. The motion of the mass center c 

is generally assumed not to be affected by the motion relative to 

- c, so that it is possible to solve for the motion of c independently 

of the motion relative to c. As a result, the motion of c, referred 

to as orbital motion, can be regarded as known. We shall confine 

ourselves to the case in which the first term on the right side of 

- Eq. (5) reduces to a known constant, so that the term can be ignored, 

This is clearly the case when the orbit is circular, or the motion 

uniform zero. It follows that the system generalized 

coordinates are the three rotations Oi(t) a.nd the three elastic 

displacements uc (x.y, z, t) , vc (x,y,z, t) , wc (x,y, z, t) . The elastic 

displacements are defined only throughout the domain De, namely the 

subdomain of D corresponding to the elastic continuum, where D is 

a three-dimensional domain corresponding to the entire body. The 

domain De is bounded by the surface S. 



-. 
For the holonomic system at hand, Hamilton's principle bas 

the form 

where the motion must be such that the end conditions 

. are satisfied. The integrand L in (7) is the Lagrangian which has 

the general functional form 

h 

in which L is the Lagrangian density. 

An application of Hamilton's principle leads to the system 

Lagrangian equations of motion. Details of the derivation are 

given in Reference 3 and will not be repeated here. Instead we quote 

directly from Reference 3 the ordinary differential equations for the 

angular displacements. 

.I. 

and the partial differential equations for the elastic displacements 

where Eqs. (11) must be satisfied at every point of the domain De. 

Moreover, Eqs. (11) are subject to the boundary conditions 



The differential operator vectors &(% , ZV , rw ) , B . (B . , B . ,B 1 
c c c -7 ?uC ?vc j w c  

and Ek (Bkuc f Bkv Bkw ) are defined by the following integration by 
parts C C 

A 2 2 
a ~  a u~ ai 

6 ( - - -3 - )  + - a uc 
(axay ) +---+ 

ax a(a uc/axay) 

2 2 2 We note that the partial derivatives a uc/ax , a uc/axay,--- 2 , a wc/ a z 2 

enter into Eqs, (11) and (12) only implicitly through the differential 

operator vectors g ,  Bj,  and _Bk, thus lending substance to a statement 

made earlier regarding the generality of the formulation. The quant- 
A 4 4 

ities QU , Qv , Qw represent distributed internal damping forces which 
C C C 

depend on the elastic motion alone and not on the rotational motion, 

It should be pointed out that the damping forces were added afterward, 

-as such forces cannot be treated by means of Hamilton's principle. 

Introducing the generalized momenta 

where the latter three are momentum densities, it is shown in Reference 

3 that the second-order Lagrangian equations, Eqs. (10) and E I H ) I ,  can 

be converted into twice the nunber of first-order Hamiltonian equations 

having the form 



. ,. a6 
pu = - - + .XU [ uc rvc lwc] + iU 

D 
n I (15 1 
C auc C C at every point of D e 

a6 
pv 

= - -  +XV [uctvc'Wc] + Q v  
C .  avc C C 

in which H is the Hamiltonian defined by 

and H is the corresponding Hamiltonian density. It should be noticed 

here that the Hamiltonian has a hybrid form as it is a function and 

a functional at the same time. The equations for the elastic motion 

are subject to the same boundary conditions, Eqs. (12). When the 

kinetic energy is quadratic in the generalized velocities, the Hamil- 

tonian reduces to the form 

which is recognized as the system total energy. 

Systems with Ignorable Coordinates 

In the case of a system free of external torques, such as the 

case under consideration, one of the angular coordinates e i ( i = T , 2 , 3 )  

is absent from the Lagrangian. Then from Eqs. (10) and the first half 

of Eqs. (14) it follows that the system possesses a first integral of 

the motion in the form of the conjugate momentum. The expression of 

the conserved momentum may be used to eliminate from the Lagranyian the 

angular velocity associated with the absent angular coordinate, thus 

reducing the number of degrees of freedom by one. The procedure for 

accomplishing this is referred to as Routh's method for the ignoration 

of coordinates (see Reference 1, Section 2.11). 



Let  u s  assume t h a t  e 3  i s  absent  from t h e  Lagrangian, so  t h a t  

t h e  conjugate  momentum i s  conserved, 
Pe3 

= a ~ / a ; ~  = f i 3  = cons tan t .  

Since t h e  p o t e n t i a l  energy does no t  depend on v e l o c i t i e s ,  from 

Eq. (5)  t h e  momentum i n t e g r a l  can be w r i t t e n  a s  

Equation (18) p lays  t h e  r o l e  of a  c o n s t r a i n t  equat ion ,  which can be 

solved f o r  i3  i n  terms of G1 and i2 .  Since t h e  elements of t h e  

angular  v e l o c i t y  ma t r ix  ( 6  \ i n  Eq.  (5 )  can no longer  be considelred 

independent b u t  r e l a t e d  by ( 1 8 ) ,  we can d e f i n e  t h e  l i n e a r  t r a n s f o r -  

mation 

which t a k e s  Eq.  (18) i n t o  account au tomat ica l ly .  By c o n t r a s t  with 

6 , t h e  column mat r ix  \ 6* \ con ta ins  only two elements ,  which m u s t  

be regarded a s  independent.  Introducing E q .  ( 1 9 )  i n t o  ( 5 ) ,  and 

d i s rega rd ing  t h e  f i r s t  term (assumed t o  be c o n s t a n t ) ,  we o b t a i n  

B2-L2 1 3 3  
T = I 2  { i*jT[l*]{ Q * J  + ( L * ~ ~ { B * J  + - + $ \ (uc+vc+wc) - 2  0 2  *2 d m  

P 2 '.?33 m 

where 



We notice that the kinetic energy, Eq. (20), is entirely free of . 
e 3  and e 3 .  

The elastic potential energy VEL is assumed to depend only on 

the elastic displacements u ~ , v ~ , w ~  and its general form will be 

introduced later. 

Stability of Motion of a Dynamical System 

Let us consider the dynamical system 

G = Z(x_) - ( 2 2 )  
For a discrete system 5 = ~ ( t )  represents a vector in a finite dim- 

ensional vector space S. The motion of the system can be represented 

as a path in that space. If Eq. (22) represents a set of canonical 

equations, then the motion of the dynamical system can be regarded as 

a succession of infinitesimal contact transformations possessing the 

group-property. The properties characterizing the group are as 

follows: 1) the identity transformation belongs to this class, 2) 

two successive transformations are commutative and the result is also 

a contact transformation, 3) two contact transformations satisfy the 

associative law, and 4) the inverse of a contact transformation is 

also a contact transformation. Hence, the motion of the system may 

be interpreted as a continuous mapping of the space S onto itself, 

For canonical systems of~quations half of the elements of x represent 

generalized coordinates and the remaining half represent the conjugate 

momenta. Moreover, the space S is simply the phase space. 

A solution of Eq. (22) satisfying 

X(5) = 2 ... (2.31 
represents a singular point or an equilibrium position. We shall be 

interested in the stability of the solutions in the neighborhood of 

equilibrium positions. Without loss of generality, we can assume that 

the equilibrium point coincides with the origin so that we shall be 

concerned with the equilibrium of the trivial solution. Denoting the 

integral curve at a given time to > 0 by x(tO) ...A = x and assuming that -0 ' 
the origin is an isolated singularity, we can introduce the following 

definitions due to Liapunov: 



a. The n u l l  s o l u t i o n  i s  s t a b l e  i n  t h e  s e n s e  of  Liapunov i f  any 

a r b i t r a r y  p o s i t i v e  E and t i m e  t t h e r e  e x i s t s  a  6 ( ~ , t ~ )  > 0 0 
such  t h a t  i f  t h e  i n e q u a l i t y  

I12011 < 6 

is s a t i s f i e l d ,  t h e n  t h e  i n e q u a l i t y  

I ( 1  I . E t t 0 5  t < m  ( 2 5 )  

is impl ied .  I f  6 i s  independent  of  to t h e  s t a b i l i t y  i s  s a i d  

t o  be  uniform. 

b.  The n u l l  s o l u t i o n  i s  a s y m p t o t i c a l l y  s t a b l e  i f  it i s  Liapunov 

s t a b l e  and i n  a d d i t i o n  

l i m  il x ( t ) l l  - = 0 
t - t w  

S i m i l a r l y ,  i f  Eq.  (26) h o l d s ,  t hen  a uniformly s t a b l e  s o l u t i o n  

is s a i d  t o  be  uniformly a s y n p t o t i c a l l y  s t a b l e .  For  autonomous 

systems s t a b i l i t y  i s  always uniform. 

c. The n u l l  s o l u t i o n  i s  s a i d  t o  be  u n s t a b l e  i f  f o r  any a r b i t r a r i l y  

s m a l l  6 and any t i m e  to such t h a t  

w e  have a t  some o t h e r  f i n i t e  t ime tl t h e  s i t u a t i o n  

P 
To t e s t  t h e  s t a b i l i t y  of t h e  t r i v i a l  s o l u t i o n ,  w e  s h a l l  use  

Liapunov 's  d i r e c t  method which i s  based on t h e  d i f f e r e n t i a l  equa t ion  

(22) b u t  does  n o t  r e q u i r e  t h e  s o l u t i o n  o f  t h i s  equa t ion .  T o  introduce 

t h e  concep t s ,  w e  c o n f i n e  o u r s e l v e s  t o  autonomous systems and cons ide r  

a scalar f u n c t i o n  U(x) - such t h a t  U ( g )  = 0. The t o t a l  t ime d e r i v a t i v e  

of  U a long  a t r a j e c t o r y  of system (22) i s  d e f i n e d  by 

dU f i = = , , . ; = v u . x  
d t  - U W & 

(290 

where XU i s  t h e  g r a d i e n t  of  t h e  s c a l a r  f u n c t i o n  U.  I n  t h e  c a s e  s f  

a h y b r i d  system U i s  bo th  a  f u n c t i o n  and a f u n c t i o n a l  a t  t h e  same 

t i m e ,  as t h e  dependent v a r i a b l e s  corresponding t o  t h e  d i s t r i b u t e d  

p o r t i o n  o f  t h e  system appear  i n  U i n  i n t e g r a t e d  form. 



Next we consider the following theorems: 

Theorem I - If there exists for the system (22) a positive (nega- 
tive) definite function U ( q )  whose total time derivative 6 (x) - is 

negative (positive) semidef inite along every trajectory of (21) , 
then the trivial solution = is stable. 

Theorem I1 - If the conditions of Theorem I are satisfied and if 
in addition the set of points at which 6 ( 5 )  is zero contains no 
nontrivial positive half-trajectory x(t), - t 2t0, then the trivial 

solution is asymptotically stable. 

Theorem I11 - If there exists for the system (22) a function U ( 5 )  

whose total time derivative 6 (x) is positive (negative) definite 
along every trajectory of (21) and the function itself can assume 

positive (negative) values in the neighborhood of the origin, t h e n  

the trivial solution is unstable, 

Theorem IV - Suppose that a functi-on U(x) such as in Theorem TIT - 
exists but for which 6 (x) - is only positive (negative) semidef ini-te 

and, in addition, the set of points at which C(x) - is zero contains 

no nontrivial positive half-trajectory x _ ( t ) ,  t >to. Suppose further 

that in every neighborhood of the origin there is a point q ( t O )  = x -0 
such that for arbitrary to 1 0  we have U(xo) > 0(<0). Then the 

trivial solution is unstable and the trajectories ~ ( ~ ~ , t ~ , t )  for 

which U(xo) > 0(<0) mustjleave the open domain U X ~ C B  .... as the time t 
- \ 

increases. 

A function U satisfying any of the preceding theorems is referred 

to as a Liapunov function. Theorems I and 111 are due to Liapu~?ov, 

whereas, Theorems I1 and IV are due to Krasovskii. A more detailed 

discussion of the theorems can be found in the text by L. Meiroviteh 

(see Reference 1, Section 6.7) . 
The Hamiltonian as a Liapunov Function 

We shall show next that under certain circumstances the Hamil- 

tonian can be used as a Liapunov function. Taking the total time 

derivative of H from Eq. (16) and using Eqs. (10) and (XI), as \h7eli 

as boundary conditions (12") and definitions (14) , we obtain 



Next we assume that the damping forces are such that 6 is negative 
semidefinite 

i r l 0  (31 1 
A A ,. 

Moreover, due to coupling, the forces QU , Qv , Qw are never iden- 

tically zero at every point of the phasecspacg butCthey reduce to 

. zero at an equilibrium point. Hence, if the Hamiltonian H is positive 

definite at an equilibrium point, then by Theorem 11, H can he re- 

garded as a Liapunov function and the equilibrium point under consider- 

ation as asymptotically stable, On the other hand, if H is not pos- 

itive definite and there are points for which it is negative, then 

by Theorem IV the equilibrium point is unstable. 

In view of the preceding discussion, we shall consider the Ham- 

iltonian as a Liapunov function. As indicated by Eq. ( 2 3 ) ,  the equi- 

librium positions are those rendering the right sides of Eqs. (15) 

equal to zero. Hence, the equilibrium positions are the sol.utions 

of the equations 

aH - -  t xu ~ u ~ , v ~ , W ~ ]  = 0 1. 

c at every point of De I -- 

To test the positive definiteness of the Hamiltonian, we use 

Sylvester's criterion (see Reference 1, Sec. 6.7). To this end, we 

represent the elastic motion by appropriate modes of vibration, derive 

the quadratic form associated with the Harniltonian in the neighborhood 

of the equilibrium and investigate the sign properties of the Hessian 

matrix, namely, the matrix of the coefficients of the quadratic form. 



The Stability of High-Spin Motion of a Satellite with Flexible 

Appendages. 

The general theory developed in the preceding sections will 

now be used to investigate the stability of a.satellite simulated by 

a main rigid body and six flexible thin rods, as shown in Figure 2a, 

In the undeformed state the body possesses principal moments of inertia 

A , B , C  about axes x,y,'z, respectively, and the rods are aligned with 

these axes. The body is initially spinning undeformed about axis z 

with angular velocity Rs. The domain of the elastic continuum D e 
consist of' three subdomains : 

Hence - r = xi + y j  + zk - over D-De, 5 = xi over Dxl r = yj over D and ..-, - - -a- &.. Y * 
E = zk .... over DZ. Assuming only flexural transverse vibrations, it 

follows that 

U _ = U  -x = v j + ~ ~ k _ ~ u = u  = v  j + ~ ~ ~ _ ~ - ~  
X- "C -cx CX - k r = Y,: C- 

+ z k over Dx 
\ 

u _ = u  = u i + w k , u = u  = U  i + w  k t &  = x i + z k o v e r ~  
"Y Y" Y- -c -cy CY - CY - C- C- Y 

~ = ~ = ~ i + v ~ ~ ~  2- u = u  c -cz = u  cz- i i v  cz- j j ~ c = x i + y j o v e r D  c- c- 
-. Z 

From Eqs. (2) we conclude that the moments and products of inertia 

of the deformed body have the values 
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and 

where soi = sin ei , Cei = COs ei (i = 1,2)* 

We shall be interested in investigating the stability a£ the 

high-spin motion in which the undeformed satellite rotates with the 

constant angular velocity $is about axis z .  Hence, we consider the 

stability in the neighborhood of the equilibrium point 

Denoting this equilibrium point by the subscript E, disregarding con- 

stant terms and terms of order higher than two, we use Eqs. ( 1 7 )  and 

(20), in conjunction with Eqs. (21), (33), (34), (35), (371, and ( 3 8 ) ,  

and obtain the Hamiltonian in the neighborhood of E in the form 



where ye recall that 

in which 



We shall now consider the form of the elastic potential energy. 

To this end, we must take into account the effect of the centrifugal 

forces. Because the satellite has significant spin about axis a ,  

whereas the angular velocities about axes x and y are relatively 
small, the centrifugal forces acting over the domains Dx, D and 

Y "  
DZ are all different. First we wish to distinguish between in-plane 

and out-of-plane vibrations of the rods associated with domains Dx 

and D . Moreover, we must distinguish between axial and transverse 
Y 

components of the centrifugal forces. It is not difficult to show 

that domains Dx and D are subjected to the axial component of the 
Y 

centrifugal force alone for the out-of-plane vibration and to both 

the axial and transverse components for the in-plane vibration, On 

the other hand, domain DZ is subjected to the transverse component 

alone. The transverse components are accounted for in that part of 

the kinetic energy not involving velocities, so that only the axial. 

centrigual forces must be included in the elastic potential energy, 

Hence, the potential energy can be written in the form 

where 



where Px and P represent the axial centrifugal forces present (see, 
Y 

for example, Ref. 5, p. 443). 

The elastic potential energy can be written in a more convenient 

form. To this end, we recall that the boundary conditions for the 

clamped-free rod corresponding to the domain hx < x < h + rx are X 

.wx (x, t) 
vx(x,t) = ax = O  at x = h x  , 

Similar boundary conditions can be written for the remaining rods. 

In view of this, integrating Eqs. (44) by parts and inserting the 

result in (431, we obtain 

The complete expression of the Hamiltonian in the neighborhood of the 

equilibrium position E is obtained by inserting expression (46) into 

(40). 

Examining the Hamiltonian, Eq. (40), and the companion equa- 

tions (41), it is obvious that the elastic displacements are not 

independent of one another. Although it may be possible to,apply 



the theory of Reference 3, perhaps by devising a testing function 

K which is known to be smaller than H and in which the elastic dis- 

placements are independent, we shall consider at this point a stabi- 

lity analysis by modal analysis." To this end, we represent the 

elastic displacements by the following series 

over D 
Y 

k 
' o e over D 

Z z 
vz = zz qZoi (t)vZOi (t) + t qZei (z) vZei (t) 

i=l i=l 

o e o e are constant integers, where ox, ex' Y, Y t  z, 'xoi' ',,if 
--- 

'xoi I *zei are eigenfunctions associated with the elastic 

rods, and Vxoi9 Vxei, Wxoir --- I 'zei are corresponding generalized 
coordinates, in which the letters o and e designate odd and even modes 

of deformation, respectively. The functions txoi, mxei, $xoir --- I 

'xei satisfy the relations 

* Work is being continued on an analysis based on Reference 4, and 
recent developments indicate that such an analysis is in the realm 
of possibility. 



Consistent with our previous discussion of the nature of the 

centrifugal forces, we recognize that the eigenfunctions entering 

into expressions (47) are defined by two distinct types of eigenvalue 

problems, namely, one type for the vibration of the radial rods assoc i -  

ated with domains Dx and D and another type for the axial rods asaoci-  
b Y 

ated with domain DZ. For the radial rods, a typical eigenfunction, 

say mxoi, must satisfy the differential equation 

over the domain hx c x < h + Ax 
, where mxoi is subject to the 

X 
boundary conditions 



Tk@ qwntities A 2 vxi (i=l , 2 , ---J are the associated eigenvalues, 

BlfniLar eigenvalue problems can be defined for +xei, qxoi, qxeit 
"yif $yoit and q yei* The solution of the eigenvalue problem 

&frned by Eqs. (49) and (50) is discussed in Ref. 5 (see Sec, 10-4) , 

The axial rods are not subjected to axial forces, so that a 
typical eigenvalue problem, say for $Zoir is defined by the differential 

oqtitatisrr 
9 

wh$& must be satisfied over the domain hZ < z c hZ + tZ , where the 
fuaction BZoi is subject to boundary conditions of the form (50). 

gimil3r eigenvalue problems can be defined for 4 z e i ~  qzoit and i Z e i e  
f g  kbe rod is uniform, the solution of the eigenvalue problem can be 

%&en directly from Ref. 5 (Sec. 5-10) . 
F Q ~  uniform or nonuniform rods the solution of the eigenvalue 

problem (49) can be obtained by one of the approximate methods des- 

ezibed in Ref. 5 (Ch. 6 ) ,  and the same can be said about the eigen- 

~a&uehprobiem . - (51) if the rod is nonuniform. In the sequel we shall 

gegard all the eigenfunctions and associated eigenvalues as known. 

The eigenfunctions possess the orthogonality property. Moreover, 

%key can be normalized, so that 
- '. 

where 6 is the Kronecker delta. Similar expressions can be written i j 
f ~ r  the remaining eigenfunctions. 



In view of the above, a typical-term in expression (46) becomes 

e 
X 

2 

d2 ( E I  + 'xei C T d m x e j l  j=1 dx Vx dx 2 dx x dx 

Hence, the potential energy VEL can be regarded as a function of the 

generqlized coordinates Vxoi' 'xei' Wxoif etc. 
From Eqs. (41) we conclude that the Hamiltonian depends on the 

. displacements x cr='cr and z of the center of mass, which, in turn, 
C 

depend on the elastic displacements according to Eqs. (42). Substi- 

tuting Eqs. (47) into (42), we conclude that the displacements x c"cP 
z depend on the generalized coordinates Uyoi,Uyei,UZoi,UZei~Vxoil --- 
C 
It follows that the Hamiltonian, Eq. (40), depends on the coordinates 

--- 
elf e2tUyoi~UyeitUZoi~ as well as their time derivatives. Hence, 
H is a quadratic form in 4(l+ox+ex+o +---+eZ) variables. For s t a b i l -  
E Y 
ity, HE must be positive definite in these variables. 

Examining expression (40), t ie conclude that HE can be written 

as the sum of a quadratic form depending on the velocities alone and 

another quadratic form depending on the coordinates alone 



Furthermore by using even and odd modes to represent the elastic 

displacements no coupling between the even and odd modes occurs, 

Hence, each of the testing functions HIE and H2E may be represented 

as the sum of two quadratic forms, one involving only even modes and 

on involving odd modes and the rigid body motion only 

where 

e e 
X z - Tj + c 

21vzi1vzj) 'zei zej - i=1 j=1 Ivxilvzj x e i  zej 

--  - iY .li .li 
21wyi1wyj) Wyei yej - i=l -j=1 Iwxi1wy3 xel yej 

ey ez 
fi fi - 

i=1 -j=1 Iuyiluzj yei zej 
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in which mx = 2pxLxr m = 2pyLy, and mZ = 2pZLZ. Similar expressions 
Y 

can be written for Jvzi,Juyi,--- and IyZirIuyif--- . Moreover, the 

conserved momentum has the value B3=QsC corresponding to the equili- 

brium position of pure spin about the z axis in the undeformcd state, 

Using again the normal mode expansions for the elastic displacements, 

we obtain for HZEe and H 2 ~ o  

e e ex e 
2 2 -Y 2 2 

1 U U + Z AwxiWxei + 2- n w y p y e i  
+ qn2 i=l xy j=l xz 'uyi uzj yei zej i=l i=l (58a-I 

and 



As indicated previously, the time derivative of the Ramiitonian 

is negative semidefinite. Hence, due to coupling, if the Hamiltonian 

is positive definite the equilibrium is asymptotically stable, and if 

the ~amiltonian can take negative values in the neighborhood of the 

origin the equilibrium is unstable. But by Eqs. (54) and (55) the 

Hamiltonian can be written in four parts, H ~ ~ ~ ,  H~~~ and B2Eo' 
so that for H to be positive definite it is necessary that E l L E e t  E IEoE --- ail be positive definite. Expressions for HIEe, --- 

H 1 ~ o  , can be 
written in the general form 

where qei and qoi are generalized coordinates and kei and Goi are 
generalized velocities. The aeijr a oij ' 'eij and Boij represent 

constant coefficients. According to Sylvester's criterion (see 

Reference 1. Sec. 6.7). HiEe, HIEo, HZEe and H 2 ~ o  are positive 

definite if conditions 



are satisfied, which represents the conditions that all the principal 

minor determinates associated with the matrices [a I , [aO] r I B e ]  and e 
[ B o ]  of the coefficients be positive. The matrices [ae] , [a,] , [$,I 
and [$,I are referred to as Hessian matrices. 

Numerical Results 

The general solution of the problem'of stability of a rigid satel- 

lite with three pairs of uniform rods has been programmed for digital 

computation, and a numerical solution has been obtained on an SBM 360 

computer. Results are presented for the case in which the rods in 

the radial directions are of equal length and the satellite possesses 

equal moments of inertia about the x and y axes. Moreover, a l l  rods 

have equal mass densities and stiffness properties, in addition to the 

rigid body.dimensions hx, h and hZ being equal. The above restrictions 
b Y 

are placed only on the numerical solution in order to facilitate the 

presentation of data; there are no such restrictions placed on the 

computer program. Figures 3 through 6 show the allowable spin ratio 

ns'"uzl for stability as a function of RAZ, with the length ratio tr/LZ 

as a parameter. The region below the appropriate curve is stable. 

These curves show that the allowable spin ratio Qs/\uzl must be lower 

than unity; the extent to which it must be lower than unity depends on 

the system parameters. It should be noted from Figures 4 through 6 

that the most restrictive region of stability is associated with the 

parameter kr/kz = 0, namely the case in which there are no radial rods. 

We may then conclude that any stable satellite possessing axial rods 

alone will remain stable with the addition of radial rods. Indeed the 

addition of radial rods increases the region of stability significantly 

and for length ratios kr/kz 2 10 the allowable spin ratio i-s very near 

unity. Figure 7 shows the effect of changing the rigid body inertia 

ratio Co/Ao on the allowable spin ratio for a fixed value of the length 



r a t i o  R,/!L,. Again the region belcw-the appropr ia te  curve is stable. 
As expected, en incxease i n  6 /A, increases the stable region. Figure 

0 
8 shows the effect ~f ~hanges in the parameter H Z ,  whore Hz = hz /ez  

Again the .region below the appropriate curve is stable, Figure 8 

also 8h0w~ that increas ing XZ yields a slight increase i n  the stabil- 

ity regiond 
P s r  camparis~n purposes, a problem which Can be ~egardcd as a 

~ p e c f a b  case sf &he presene one, i n  the sense that it considers only 
@pin  axis rods, bas been cs~sidered~ this is the problem investigated 
in Reference 4 ,  Results for the 5s~~-mode approximation and those 

of Reference 4 sre presented in Figure 9 and, as expected, they 
Bndicake that the   rite ria sbtained i n  Reference 4 wsrking directly 
with the hybrid system of equations are more stringent tban those 
obtained bere by meam of modal analysis, 

Summary and Recommendation for Future Studies - -- - 
The mathematical formulation associated with the problem of the 

stability of motion of a satellite consisting of a main rigid body 
and three pairs of flexible booms has been completed. The booms are 

capable of bending in t w a  orthogonal directisns, Whereas the rota- 

t i s n a l  motion sf the bady is described by generalized coordinates 
depending on time alone, the elastic displacements of the booms depend 
an spatial position and time, Because of the flexibility of the booms, 

the center o f  mass of the body is continuously - shifting relative to 

&he m ~ i n  rigid body, These displacements, however, do not add degrees 

of fresdan since @key Can be expressed in terms of integrals involving 
$he eEastic displacements, The farmulation is appreciably more corn- 

plete tban that of Reference 2, Assuming no external t.orques, one 

8f  the  cosrdinates describing the rotakional motion is ignorable. 
The biapunov second method bas keen chosen for the stability 

ant3Pysis because it is likely to yield results which can be inter- 

preted more readily than those obtained by a purely numerical inte- 

grekion  of the equations of motion, Due to coupling of the elastic 

displacements,'it is not feasible to use the stability method developed 



by the principal investigator (see References 3 and 4). Instead, 

modal analysis is used to reduce the system from a hybrid to an 

entirely discrete one. Since the elastic vibration results in energy 

dissipation, according to the Liapunov second method, the equilibrium 

position is asymptotically stable if the Hamiltonian is positive de- 

finite and unstable if it can take negative values in the neighborhood 

of the equilibrium. 

The equilibrium position investigated corresponds to the high-." 

spin motion of the undeformed satellite about one of the principal 

axes, namely, the z axis. The constant angular velocity in that 

position is denoted by Qs. The stability of the equilibrium is in- 

vestigated by means of a computer program based on Sylvester" scriter- 

ion. 

The formulation is quite general, in the sense that booms of ar- 

bitrary flexural stiffness and mass distribution are considered. For 

a numerical solution the booms are assumed uniform. Although the 

results presented are numerical in nature, there appears that a possi- 

bility exists for deriving closed-form criteria in terms of infinite 

series associated with the natural modes of the elastic booms. This 
b 

possiljility is presently being explored. 

Work is being continued on a stability analysis based on the 

formulation of Ref. 4, which works directly with the hybrid system, 

Recent developments in this regard make the outlook quite promising. 
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Figure  I - The F lex ib l e  B o d y  in an Inertial Space 
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2b-  The Satellite Rotational Motion 
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